1. (18%) Let \(Y_i = \alpha + \beta x_i + \varepsilon_i, \; i = 1, \ldots, n \), where \(\varepsilon_i \) are independently distributed as \(N(0, \sigma^2) \). Find the MLEs of \(\alpha, \beta \) and \(\sigma^2 \) and the distributions of these estimates.

2. (16%) Let the stochastically independent random variables \(X \) and \(Y \) have distributions that are \(N(\theta_1, \theta_3) \) and \(N(\theta_2, \theta_3) \), respectively, where \(\theta_1, \theta_2, \theta_3 \) are unknown. Let \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_n \) be two independent random samples from these distributions. Derive the likelihood ratio test for testing \(H_0: \theta_1 = \theta_2 \) versus \(H_1: \theta_1 \neq \theta_2 \).

3. (16%) Let \(X_1, \ldots, X_n \) be a random sample from \(N(\theta, 1) \), where the mean \(\theta \) is unknown. Consider testing the simple hypothesis \(H_0: \theta = \theta_0 \), where \(\theta_0 \) is known, against \(H_1: \theta \neq \theta_0 \). Show that there is no uniformly most powerful test.

4. (10%) Let \(X_1 \) and \(X_2 \) be iid random variables with the pdf \(f(x) = e^{-x}, x \in (0, \infty) \). Show that \(Y_1 = \frac{X_1}{X_1 + X_2} \) and \(Y_2 = X_1 + X_2 \) are independent.

5. (20%) If the independent variables \(Y_1 \) and \(Y_2 \) have means \(\mu_1, \mu_2 \) and variances \(\sigma_1^2 \) and \(\sigma_2^2 \), respectively. Find (a) the mean and variance of the product \(W = Y_1 Y_2 \) and (b) the covariance and correlation of \(Y_1 \) and \(W \) in terms of the means and variances of \(Y_1 \) and \(W \).

6. (20%) Let \(X_{ij}, i = 1, \ldots, m \), and \(X_{ij}, j = 1, \ldots, n \), be two random samples from the Bernoulli \((p_1) \) and Bernoulli \((p_2) \) population, respectively. Define \(\hat{p}_1 = \frac{\sum X_{i1}}{m} \) and \(\hat{p}_2 = \frac{\sum X_{j1}}{n} \), and \(\hat{p} = \left\{ \frac{\sum X_{i1} + \sum X_{j1}}{m+n} \right\} \). Describe and compare the asymptotic distributions of \(U_1 \) and \(U_2 \) for (a) \(p_1 = p_2 \), and (b) \(p_1 \neq p_2 \), where

\[
U_1 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{m} + \hat{p}_2(1-\hat{p}_2)/n}} \quad \text{and} \quad U_2 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})/(m+n + 1/n)}}.
\]