1. For the given loading on the truss shown, which of the following set of members ARE zero-force members? (a) AF, EI (b) DH, BG (c) FK, IO (d) CG, CH

2. The \(y \)-coordinate of the centroid of semielliptical area, \(\bar{y} \), is \(\frac{4b}{3\pi} \). The area of the semielliptical shape is \(\frac{\pi ab}{2} \). What is the \(x \)-coordinate of the centroid, \(\bar{x} \), of quarter-elliptical area? (a) \(\frac{2a}{3\pi} \) (b) \(\frac{4a}{3\pi} \) (c) \(\frac{4a}{3} \) (d) \(\frac{2a}{3} \)

3. What is the maximum bending moment for the beam and loading shown? (a) \(\frac{w_0L^2}{96} \) (b) \(\frac{w_0L^2}{72} \) (c) \(\frac{w_0L^2}{48} \) (d) \(\frac{w_0L^2}{36} \)

4. A spring of constant 15 kN/m connects \(C \) and \(F \) of the linkage shown. Neglecting the weight of the spring and linkage, determine the force in the spring when a vertical downward 120-N force is applied at points \(E \) and \(F \). (a) 120 N (b) 180 N (c) 240 N (d) 60 N.
5. A stepped shaft of solid circular cross section is held against rotation at the ends. If the allowable shear stress is 70 MPa, what is the allowable torque T that may be applied to the shaft at C?

![Shaft Diagram]

Problem 5.

6. A cube of granite with sides of length $a = 50$ mm is tested in a laboratory under triaxial stress. Strain gages mounted on the faces of the blocks record the following strains: $e_x = -620 \times 10^{-6}$ and $e_z = -250 \times 10^{-6}$. Calculate the following quantities: (a) the normal stresses σ_x, σ_y, and σ_z acting on the x, y, and z faces of the element; (b) the maximum shear stress τ_{max} in the material; (c) the change ΔV in volume of the block; and (d) the total strain energy U stored in the block. (Assume the $E = 60$ GPa, $\nu = 0.25$) (10%)
11. Solve the following differential equations.

 (a) \((2x^3 - xy^2 - 2y + 3)dx - (x^2 + 2x)dy = 0\) \((5\%)\)

 (d) \(y'' + 2y' + y = xe^{-x}\) \((5\%)\)

12. Solve the initial value problem (10%)
 \(y'' + 3y' + 2y = f(t);\quad y(0) = 0,\quad y'(0) = 1\)

 In which \(f(t) = \begin{cases}
 1, & 0 < t < 1 \\
 0, & \text{otherwise}
 \end{cases}\)

13. The governing differential equation for the deflection of a uniform beam is
 \[E I y^{(4)} = -q(x). \]
 (A) Find the general solution of the differential equation. (3%)
 (B) What are the boundary conditions for the beam shown in the figure? (3%)
 (C) Find the elastic curve \(y(x)\) for the uniform beam shown. (3%)
 (D) Determine the slope at \(O\). (3%)
 (E) Determine the maximum deflection. (3%)

![Diagram of a uniform beam with a load at one end and a deflection at the other.](Problem 13.)