注意：只寫答案而無計算過程，一律不給分。

30% 1. 求下面的極限值。(極限也可能不存在，請說明)

(a) \(\lim_{x \to 0^+} x^x \) \hspace{1cm} (b) \(\lim_{x \to 0^+} \sqrt{x} e^{\cos(\pi/x)} \)

(c) \(\lim_{(x, y) \to (0, 0)} \frac{xy}{x^2 + y^2} \) \hspace{1cm} (d) \(\lim_{x \to 0} \frac{x \int_0^x e^{t^2} \, dt}{1 - e^{x^2}} \)

(e) \(\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \right) \) \hspace{1cm} (f) \(\lim_{n \to \infty} \left(1 - \frac{\pi^2}{3^2} + \frac{\pi^4}{5^2} - \cdots + \frac{(-1)^{n-1} \pi^{2n}}{(2n-1)!} \right) \)

30% 2. 求下列各式的積分。((a), (b) 各5%，(c), (d) 各10%)

(a) \(\int_1^\infty \frac{dx}{1 + e^x} \) \hspace{1cm} (b) \(\int_0^1 \int_0^1 \sin(y^2) \, dy \, dx \)

(c) \(\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1 + x^2 + y^2} \, dx \, dy \)

(d) \(\int_T (3 + 2xy) \, dx + (x^2 - 3y^2) \, dy \)，其中 \(T \) 是一個橢圓

10% 3. 一個三次多項函數 \(f(x) = ax^3 + bx^2 + cx + d \) 在 \(x = -2 \) 有局部最大值 3，在 \(x = 1 \) 有局部最小值 0，求此多項函數。
10% 4. 令函數 \(g: [a,b] \to \mathbb{R} \), \(c \) 是 \([a,b]\) 上的一點, 我們說 \(c \) 是一個固定點, 如果 \(g(c) = c \).

(a) 如果函數 \(g \) 是連連續的, 且其定義域和值域都是在區間 \([a,b]\), 試証 \(g \) 在 \([a,b]\) 內至少有一個固定點．

(b) 如果，除 (a) 的條件外，\(g'(x) \) 在 \((a,b)\) 內存在且 \(|g'(x)| \leq k < 1 \) \(\forall x \in (a,b) \), 證明此固定點是唯一的．

10% 5. 求在橢球（ellipsoid）內所能構造之長方體的最大體積為何。假設此長方體的三邊分別與座標軸互相平行, 而橢球的方程式為 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \).

10% 6. 令 \(P(1,\sqrt{2}) \) 為橢圓 \(\frac{x^2}{2} + \frac{y^2}{4} = 1 \) 上的一點．

(a) 求在 \(P \) 點上的單位法向量．

(b) 求在 \(P \) 點上橢圓的曲率（curvature）．