1. (10%) Suppose that \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = c \), where \(c > 0 \) is a real number.

Prove that \(\lim_{x \to a} [f(x)g(x)] = \infty \) using the arguments with \(\epsilon \) and \(\delta \).

2. (10%) Find the value of \(\lim_{x \to 3} \left(\frac{x}{x - 3} \int_0^x \sin t \frac{1}{t} dt \right) \).

3. (10%) For what values of \(c \) does the polynomial \(P(x) = x^4 + cx^3 + x^2 \) have two inflection points?

One inflection point? None?

4. (a) (5%) Evaluate \(\int_0^n [x] dx \), where \(n \) is a positive integer and \([x] \) is the greatest integer function (or called as the floor function) that gives the largest integer less than or equal to \(x \).

(b) (5%) Evaluate \(\int_a^b [x] dx \), where \(a \) and \(b \) are real numbers with \(0 \leq a < b \).

5. (a) (5%) Evaluate \(\int e^{-x^2} dx \) as an infinite series.

(b) (5%) Evaluate \(\int_0^1 e^{-x^2} dx \) correct to within an error of 0.001.

6. (a) (10%) Assume \(A \) is an \(m \) by \(n \) matrix. Prove that the system of equations \(Ax = 0 \) has a non-trivial solution if and only if \(\text{rank}(A) < n \).

(b) (5%) Show that no linearly independent subset of a vector space can contain the zero element.

(c) (10%) Let \(R_2[x] \) be the vector space of all real polynomials of degree at most 2. Consider \(p(x) = 2 + x + x^2 \), \(q(x) = x + 2x^2 \), and \(r(x) = 2 + 2x + 3x^2 \). Prove or disprove that \(p(x) \), \(q(x) \), and \(r(x) \) are linearly independent in \(R_2[x] \). (Hint: You can use the results of part (a) and (b) directly in part (c).)
7. (10%) Solve the following system of equations for all possible real values of β:

\[
\begin{align*}
 x + y + z + t &= 4, \\
 x + \beta y + z + t &= 4, \\
 x + y + \beta z + (3-\beta)t &= 6, \\
 2x + 2y + 2z + \beta t &= 6.
\end{align*}
\]

8. (15%) Find the eigenvalues and eigenvectors of the matrix B,

\[
B = \begin{bmatrix}
 1 & -3 & 3 \\
 3 & -5 & 3 \\
 6 & -6 & 4
\end{bmatrix}
\]

Is this matrix diagonalizable? Why?