1. Two rods are connected by a frictionless collar B. Knowing that the magnitude of the couple M_d is 500 N \cdot cm., determine (a) the couple M_C required for equilibrium, (b) the corresponding components of the reaction at C. (25%)

![Fig. 1](image1)

2. A slender rod AB, of weight W, is attached to blocks A and B which may move freely in the smooth guides shown. The constant of the spring is k and the spring is unstretched when AB is horizontal. (a) Draw the free body diagrams of bar AB, blocks A and B. (b) Neglecting the weight of the blocks, derive an equation in θ, W, l, and k which must be satisfied when the rod is in equilibrium. (25%)

![Fig. 2](image2)
3. A cylindrical shell A of mass m and radius r rolls without slipping with a velocity v_0 on a horizontal surface just before it strikes an identical cylindrical shell B that is at rest. Assume that the impact is perfectly elastic, the coefficient of kinetic friction between each cylindrical shell and the surface is $\mu_k = 0.1$, and the friction between both cylindrical shells is ignored. Determine the velocities of two cylindrical shells after the impact and they have started rolling uniformly. (25%)

![Diagram of two cylindrical shells](image)

4. The slender rod AB of length 2 meter and mass 10 kg is pinned at A to a vertical axle DE which rotates with a constant angular velocity ω. Let a 1 meter long horizontal cable BC be attached to the axle and to the end B of the rod. Determine the maximum angular velocity such that the tension in the cable BC vanishes. (25%)