1. A thin-walled spherical pressure vessel has an inner diameter of 2 m and a thickness of 10 mm. Its diameter is increased by 1 mm when the vessel is pressurized. Determine the pressure causing this deformation, and find the maximum in-plane shear stress and the absolute maximum shear stress at a point on the outer surface of the vessel. The material is steel, for which Young’s modulus $E = 200 \text{ GPa}$ and Poisson’s ratio $\nu = 0.3$.

2. For the beam loaded as shown in Fig. 2, determine the angle of rotation at B for member AB and the deflection at B, and draw the shear and moment diagrams. The flexural rigidity for member AB and BC is EI.

![Fig. 2](image-url)
3. The uniform circular shaft of diameter d shown in Fig. 3 is attached to rigid wall at end A and is welded to a rigid flange at end C. The holes in the flange were supposed to align with holes tapped in the wall plate. But due to geometric misfit a uniformly distributed torque t_0 must be applied over the segment BC to rotate end C through an angle ϕ to perfectly align the holes in the flange with those in the wall plate. When bolts are inserted at C and securely tightened, the initial distributed torque t_0 is removed. Determine the final maximum residual shear stress. (25%)

![Fig. 3](image_url)

4. The right-angle elastic frame ABC is supported by a roller at end A, a hinge at its corner B, and an elastic spring at end C as shown in Fig. 4. The legs AB and BC have the same flexural rigidity EI. The elastic spring has a spring constant $k = 2EI/L^3$ and is initially free of stretch. Determine the reactions at A and B if a moment M_o is applied at end A. (25%)

![Fig. 4](image_url)