機率

1. A box contains 3 red and 5 blue balls.
 (a) Balls are drawn at random without replacement until a red ball is drawn.
 What is the probability that exactly 3 drawn are required. (4 points)
 (b) Balls are drawn at random with replacement until a red ball is drawn. What is
 the probability that exactly 3 drawn are required. (4 points)
 (c) Balls are drawn at random with replacement 6 times. What is the probability
 that 3 red balls and 3 blue balls are drawn in these 6 times. (4 points)

2. Let X, Y be independently uniformly distributed over $(0, 1)$.
 Define $Z = x^2$, and $W = \max(X,Y)$.
 (a) Find distribution function of Z. (3 points)
 (b) Find $E(Z)$. (4 points)
 (c) Find distribution function of W. (3 points)
 (d) Find $E(W)$. (4 points)

3. Let the joint density function of random variables X and Y be given by

 \[f(x, y) = \begin{cases}
 2 & \text{if } 0 \leq y \leq x \leq 1 \\
 0 & \text{otherwise}
 \end{cases} \]
 (a) Calculate the marginal density function of X. (5 points)
 (b) Calculate $P(2X+2Y < 3)$. (7 points)

4. Let X_1, X_2, \ldots, X_n be a random sample of size n from a continuous distribution
 function F with mean μ and variance σ^2. Let the sample mean
 \[\overline{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}. \]
 (a) What are $E(\overline{X})$ and $\text{Var}(\overline{X})$? (5 points)
 (b) Let $\mu = 100$, $\sigma^2 = 40$, $n = 90$. Use central limit theorem to approximate
 \[P(99 < \overline{X} < 101). \] (Express your solution by using the standard normal
 distribution function Φ.) (7 points)
線性代數

5. (3 points;複選，答對每個選項得1分，答錯每個選項扣1分，本題合計得分為負時，
 以0分計；未作答亦以0分計) Assume A is an $m \times n$ matrix with rank r and b
 is a column vector. Which statements are true?
 A. If $m > r$ and $n = r$, then $Ax = b$ must have no solution for some b and
 exactly one solution for other b.
 B. If $m > r$ and $n > r$, then $Ax = b$ has infinitely many solutions for some b and
 exactly one solution for other b.
 C. If $n = r$, then $Ax = b$ has either one solution or none.

6. (5 points;複選，答對每個選項得1分，答錯每個選項扣1分；本題合計得分為負時，
 本題以0分計；未作答亦以0分計) Suppose $Q = [q_1 \ q_2 \ q_3] = \begin{bmatrix} 1 & 1 & 1 \\
 1 & 1 & -1 \\
 1 & -1 & 1 \\
 1 & -1 & -1 \end{bmatrix}$. Let
 $S_{12} = \text{span}(q_1, q_2)$ and $S_{23} = \text{span}(q_2, q_3)$. Which statements are true?
 A. The union of the two subspaces S_{12} and S_{23} forms a vector space.
 B. The intersection of the two subspaces S_{12} and S_{23} forms a vector space.
 C. The span(q_1) is an orthogonal complement of the subspace S_{23}.
 D. The rows of Q form a basis for the row space.
 E. The dimension of the row space of Q is 3.

7. (4 points;複選，答對每個選項得1分，答錯每個選項扣1分；本題合計得分為負時，
 以0分計；未作答亦以0分計) Which statements are correct?
 A. Assume V and W are vector spaces and $L : V \to W$ is a linear transformation.
 Let $\ker(L)$ denote the kernel of L and $L(S)$ denote the image of S for any
 subspace S of V. If $\dim(V) = n$ and $\dim(W) = m$, then
 $\dim(\ker(L)) + \dim(L(V)) = m$. (Assume n and m are finite.)
 B. Using the same notations in the previous question, if $x \in \ker(L)$, then
 $L(v + x) = L(v)$ for any $v \in V$.
 C. Let P_3 be the space consisting of all polynomial of degree no more than 3, and
 D be the differentiation operator on P_3. Then, $\ker(D) = \{0\}$.
 D. If A and B are similar matrices, then $\det(A - \lambda I) = \det(B - \lambda I)$ for any scalar
 λ.
8. (6 points; 複選，答對每個選項得 2 分，答錯每個選項扣 2 分；本題合計得分為負時，本題以 0 分計；未作答亦以 0 分計) Which statements are correct?
 A. Let \(\mathbf{u}_1 = (-1, 2, 1), \ \mathbf{u}_2 = (1, 1, -2), \ \mathbf{v} = (10, 5, 10), \) and \(S = \text{span}(\mathbf{u}_1, \mathbf{u}_2). \) The (shortest) distance between \(\mathbf{v} \) and \(S \) is \(\frac{12\sqrt{50}}{5}. \)
 B. For the same setting in the previous question, the least square solution of the system \(x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 = \mathbf{v} \) is \(x_1 = \frac{1}{2} \) and \(x_2 = -\frac{1}{2}. \)
 C. Let \(V \) be an inner product space, and \(\langle \mathbf{u}_1, \mathbf{u}_2 \rangle \) denote the inner product of any two vectors \(\mathbf{u}_1, \mathbf{u}_2 \in V. \) If \(\mathbf{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\} \) is an ordered basis of \(V, \) then for any vector \(\mathbf{u} \in V, \) the coordinate of \(\mathbf{u} \) can be given by \([\mathbf{u}]_\mathbf{B} = \begin{bmatrix} \langle \mathbf{u}, \mathbf{v}_1 \rangle \\ \langle \mathbf{u}, \mathbf{v}_2 \rangle \\ \vdots \\ \langle \mathbf{u}, \mathbf{v}_n \rangle \end{bmatrix}. \)

9. (6 points; 複選，答對每個選項得 2 分，答錯每個選項扣 2 分；本題合計得分為負時，本題以 0 分計；未作答亦以 0 分計) Which statements are correct?
 A. Assume \(\mathbf{A} \) is a \(m \times n \) matrix and \(\mathbf{B} \) is a \(m \times p \) matrix. If \(\mathbf{X} \) is an \(n \times p \) unknown matrix, then the system \(\mathbf{A}^T \mathbf{AX} = \mathbf{A}^T \mathbf{B} \) always has a solution. (Here we assume \(m \geq n. \))
 B. The matrix \(\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \) possesses a complete orthonormal set of eigenvectors.
 C. \(\begin{bmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) is not defective.

10. (6 points; 複選，答對每個選項得 2 分，答錯每個選項扣 2 分；本題合計得分為負時，本題以 0 分計；未作答亦以 0 分計) Which statements are true?
 A. Assume \(\mathbf{A}_{3 \times 3} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \) and \(\mathbf{B}_{3 \times 3} = \begin{bmatrix} 2a_2 \end{bmatrix} a_2^T + a_3^T \). If \(\det \mathbf{A} = 2, \) then \(\det(\mathbf{AB}^{-1}) = 1. \)
 B. If \(\mathbf{P}_{3 \times 3} \) is a projection matrix that projects any vector in \(\mathbb{R}^3 \) onto the vector
u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \text{ then there must be two eigenvectors that correspond to the eigenvalue of } 0.

C. If \(A \) is a \(3 \times 3 \) matrix with 3 distinct eigenvalues 0, 1, 2, then the matrix \((A + I) \) must be invertible.

11. (10 points) Suppose there is an election every year in a country and the total population of this country remains fixed. If 60% of the people voted for K Party whereas 40% of the people voted for D Party in the election last time. However, 8% of K Party voters and 4% of D Party voters change their minds and vote for the rival party each year. What will the percentages of K Party and D Party voters be after \(n \) years, when \(n \) approaches infinity?

12. Consider the vector space \(\mathbb{C}[0,1] \) with inner product defined by
\[
\langle f, g \rangle = \int_0^1 f(x)g(x)\, dx,
\]
where \(\mathbb{C}[0,1] \) denotes the set of all real-valued functions that are defined and continuous on the closed interval \([0,1]\).

A. (5 points) Use the Gram-Schmidt process to find an orthonormal basis for the subspace \(S \) spanned by 1, and \(x \).

B. (5 points) Find the best least squares approximation to \(e^x \) on the interval \([0,1]\) by a function in \(S \).