Discrete Mathematics There are two problems in the discrete mathematics part. The first problem consists of 6 independent questions, as 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6. The second problem consists of 8 questions. Please answer them in order. For each question, you need to write down your answer first and then explain why.

Problem 1.

1.1. (5 points) When we toss a coin, we obtain either head or tail. Now we toss a coin 5 times. There are 2^5 possible outcomes. How many of them contain no two consecutive heads?

1.2. (4 points) Let A be the set $\{1, 2, 3\}$ and B be the set $\{3.14, 2.71\}$. Let the notation 2^X denote the set of all subsets of X (assume X is a set). Let the notation $X \times Y$ denote the Cartesian product of the two sets X and Y. How many elements are there in the set $2^{A \times B}$? You need to write down your answer first and explain why.

1.3. (4 points) How many partitions are there on a set of 4 elements?

1.4. (4 points) What is the smallest (positive) number n satisfying:

- When divided by 2, the result is a square.
- When divided by 3, the result is a cube.

1.5. (4 points) Let a, b, c, d be positive integers. Assume $a^3 = b^2$ and $c^3 = d^2$. If $c - a = 25$, what are a, b, c, d?

1.6. (4 points) Let a, b be two symbols. The notation a^3 denotes the string aaa, that is, a string of three a's. Similarly, the notation a^4 denotes the string of four a's. Similarly, the notation a^k denotes the string of k a's. Find a 1-1 mapping from \mathcal{N} to $\{a^k b^j \mid j, k \in \mathcal{N}\}$.
Problem 2.

2.1 (3 points) The complement of a simple graph G is the simple graph \(\overline{G} \) with the same vertices as G. An edge exists in \(\overline{G} \) if and only if it does not exist in G. If G is a simple graph with 11 edges and its complementary graph \(\overline{G} \) has 10 edges, then how many vertices does G have?

2.2 (3 points) Is there a unique binary tree with 6 vertices whose preorder vertex listing is ABCEFD and whose inorder vertex listing is ACFEBD. Justify your answer.

2.3 (3 points) \(N_h \) is defined as the minimum number of vertices in a balanced binary tree of height h. Find \(N_2 \), \(N_3 \).

2.4 (3 points) Let \(n(T) \) denote the number of vertices in a full binary tree T and \(h(T) \) the height of T. Find the value range of \(n(T) \) in terms of \(h(T) \).

2.5 (3 points) Under what conditions is an edge in a connected graph G contained in every spanning tree of G.

2.6 (3 points) Let \(a_r \) denote the number of bacteria there are on the \(r \)th day in a controlled environment. We define the rate of growth on the \(r \)th day to be \(a_r-2a_{r-1} \). If the rate of growth doubles every day, formulate the recurrence relation \(a_r \), given that \(a_0 = 1 \).

2.7 (3 points) \(F_n \) is the nth Fibonacci number, where \(n \) is a positive number. Compute \(F_{n+1}F_{n-1}-(F_n)^2 \)

2.8 (4 points) Let \((A, \star)\) and \((B, \bullet)\) be two algebraic systems with operators \(\star \) and \(\bullet \) defined on A and B, respectively. \(f \) is called a homomorphism from \((A, \star)\) to \((B, \bullet)\) if there exists a function \(f \) from A onto B such that for any \(x \) and \(y \) in A \(f(x \star y) = f(x) \bullet f(y) \). Justify briefly whether such a homomorphism exists.

\[
\begin{array}{cccc}
\star & a & b & c \\
\hline
a & a & a & d \\
b & b & a & c \\
c & c & b & a \\
d & d & d & b \\
\end{array}
\]

\[
\begin{array}{ccc}
\bullet & \alpha & \beta \\
\hline
\alpha & \alpha & \beta \\
\beta & \beta & \alpha \\
\end{array}
\]
3. (3 points; 複選，答對每個選項得1分，答錯每個選項扣1分；本題合計得分為負時，以0分計；未作答亦以0分計) Assume A is an $m \times n$ matrix with rank r and b is a column vector. Which statements are true?

A. If $m > r$ and $n = r$, then $Ax = b$ must have no solution for some b and exactly one solution for other b.

B. If $m > r$ and $n > r$, then $Ax = b$ has infinitely many solutions for some b and exactly one solution for other b.

C. If $n = r$, then $Ax = b$ has either one solution or none.

4. (5 points; 複選，答對每個選項得1分，答錯每個選項扣1分；本題合計得分為負時，本題以0分計；未作答亦以0分計) Suppose $Q = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$. Let $S_{12} = \text{span}(q_1, q_2)$ and $S_{23} = \text{span}(q_2, q_3)$. Which statements are true?

A. The union of the two subspaces S_{12} and S_{23} forms a vector space.

B. The intersection of the two subspaces S_{12} and S_{23} forms a vector space.

C. The span(q_1) is an orthogonal complement of the subspace S_{23}.

D. The rows of Q form a basis for the row space.

E. The dimension of the row space of Q is 3.

5. (4 points; 複選，答對每個選項得1分，答錯每個選項扣1分；本題合計得分為負時，以0分計；未作答亦以0分計) Which statements are correct?

A. Assume V and W are vector spaces and $L: V \to W$ is a linear transformation. Let $\ker(L)$ denote the kernel of L and $L(S)$ denote the image of S for any subspace S of V. If $\dim(V) = n$ and $\dim(W) = m$, then $\dim(\ker(L)) + \dim(L(V)) = m$. (Assume n and m are finite.)

B. Using the same notations in the previous question, if $x \in \ker(L)$, then $L(v + x) = L(v)$ for any $v \in V$.

C. Let P_3 be the space consisting of all polynomial of degree no more than 3, and D be the differentiation operator on P_3. Then, $\ker(D) = \{0\}$.

D. If A and B are similar matrices, then $\det(A - \lambda I) = \det(B - \lambda I)$ for any scalar λ.
6. (6 points; 複選, 答對每個選項得 2 分, 答錯每個選項扣 2 分; 本題合計得分為負時,本題以 0 分計; 未作答亦以 0 分計) Which statements are correct?
A. Let \(u_1 = (-1,2,1) \), \(u_2 = (1,1,-2) \), \(v = (10,5,10) \), and \(S = \text{span}(u_1, u_2) \). The (shortest) distance between \(v \) and \(S \) is \(\frac{17\sqrt{30}}{7} \).

B. For the same setting in the previous question, the least square solution of the system \(x_1 u_1 + x_2 u_2 = v \) is \(x_1 = \frac{11}{7} \) and \(x_2 = -\frac{3}{7} \).

C. Let \(V \) be an inner product space, and \(\langle u_1, u_2 \rangle \) denote the inner product of any two vectors \(u_1, u_2 \in V \). If \(B = \{v_1, v_2, \ldots, v_n\} \) is an ordered basis of \(V \), then for any vector \(u \in V \), the coordinate of \(u \) can be given by \([u]_B = \left[\langle u, v_1 \rangle \langle u, v_2 \rangle \cdots \langle u, v_n \rangle \right]^T \).

7. (6 points; 複選, 答對每個選項得 2 分, 答錯每個選項扣 2 分; 本題合計得分為負時,本題以 0 分計; 未作答亦以 0 分計) Which statements are correct?
A. Assume \(A \) is a \(m \times n \) matrix and \(B \) is a \(m \times p \) matrix. If \(X \) is an \(n \times p \) unknown matrix, then the system \(A^TAX = A^TB \) always has a solution. (Here we assume \(m \geq n \).)

B. The matrix \(\begin{bmatrix} -\frac{1}{2} & \frac{i}{2} \\ \frac{i}{2} & \frac{3i}{2} \end{bmatrix} \) possesses a complete orthonormal set of eigenvectors.

\[\begin{bmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \]

C. \(\begin{bmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) is not defective.

8. (6 points; 複選, 答對每個選項得 2 分, 答錯每個選項扣 2 分; 本題合計得分為負時,本題以 0 分計; 未作答亦以 0 分計) Which statements are true?
A. Assume \(A_{3 \times 3} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \) and \(B_{3 \times 3} = \begin{bmatrix} 2a_2^T \\ a_1^T + a_2^T + a_3^T \end{bmatrix} \). If \(\det A = 2 \), then \(\det(AB^{-1}) = 1 \).

B. If \(P_{3 \times 3} \) is a projection matrix that projects any vector in \(\mathbb{R}^3 \) onto the vector
u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ then there must be two eigenvectors that correspond to the eigenvalue of 0.}

C. If \(A \) is a 3\times3 matrix with 3 distinct eigenvalues 0, 1, 2, then the matrix \((A + I)\) must be invertible.

9. **(10 points)** Suppose there is an election every year in a country and the total population of this country remains fixed. If 60% of the people voted for K Party whereas 40% of the people voted for D Party in the election last time. However, 8% of K Party voters and 4% of D Party voters change their minds and vote for the rival party each year. What will the percentages of K Party and D Party voters be after \(n \) years, when \(n \) approaches infinity?

10. Consider the vector space \(C[0,1] \) with inner product defined by
\[
\langle f, g \rangle = \int_0^1 f(x)g(x)\,dx,
\]
where \(C[0,1] \) denotes the set of all real-valued functions that are defined and continuous on the closed interval [0,1].

A. **(5 points)** Use the Gram-Schmidt process to find an orthonormal basis for the subspace \(S \) spanned by 1, and \(x \).

B. **(5 points)** Find the best least squares approximation to \(e^x \) on the interval [0,1] by a function in \(S \).