1. Demonstrate that the critical load P for the **pinned-fixed** column at the first buckling mode is $\frac{20.19EI}{L^2}$. Assume that the length of the column is L, the moment of inertia is I and the Young's modulus is E. Please draw the free body diagram and write down all of the derivation procedures in detail. (20%) (Hint: the smallest value of λL in the characteristic equation, $\tan(\lambda L) = \lambda L$, is 4.493)

2. A couple, M_0, is applied to a uniform cantilever beam as show in Fig 1.
 (a) Determine the expressions for the slope and deflection of the beam. (10%)
 (b) Determine the reactions at A and B (10%)
 (c) Draw the shear force and bending moment diagram for the beam (10%)

![Fig 1](image_url)

3. For the given stress state shown in Fig 2, please determine the absolute maximum shear stress. (10%)

![Fig 2](image_url)
4. The cantilever beam of an equal-leg, thin-wall X-shaped section is subjected to a transverse concentrated force P shown in Fig. 3. This beam has elastic modulus E and dimensions $a << b << L$.

(a) Determine the maximum tensile and compressive bending stresses. (10%)

(b) Determine the maximum value of the longitudinal shear flow. (10%)

5. The slender beam of constant flexural rigidity EI suspended by two elastic springs at its ends is subjected to a linear distributed load of intensity $q(x)$ shown in Fig. 4. Both linear elastic springs are pinned to ends A, B and have the same spring constant k. Refer to the Cartesian coordinate system whose origin is set at the undeformed position of end point A.

(a) Determine the elastic deflection function $w(x)$. (15%)

(b) What would be the deflection function $w(x)$ if the beam was rigid? (5%)

Fig. 3

Fig. 4