1. (10%) Consider the signal \(x(t) = (\cos^2 20\pi t) \cdot (\sin 10\pi t) \).

 (a) (2%) Find its fundamental frequency.
 (b) (6%) Find its complex exponential Fourier series expansion without doing any integration.
 (c) (2%) Find its average power.

2. (10%) The signal

 \[x(t) = 3 + 4 \cos 10\pi t + 5 \cos 14\pi t + 2 \cos 20\pi t \]

 is sampled at a rate of 30 samples per second. Plot the spectrum of the sampled signal \(x_s(t) \) showing all components for \(|f| < 80 \). Fully explain how \(x(t) \) can be reconstructed from the sampled signal \(x_s(t) \).

3. (15%) A system is described by the input-output relationship

 \[y(t) = x(t^2) \]

 Is this system:
 (a) (5%) Linear?
 (b) (5%) Causal?
 (c) (5%) Time-invariant?

 Prove your answers.

4. (15%) Use the convolution theorem of Laplace transforms to find \(y(t) = x_1(t) * x_2(t) \), where \(* \) denotes convolution and \(x_1(t) \) and \(x_2(t) \) are given below:

 (a) (7%) \(x_1(t) = e^{-2t} u(t) \) and \(x_2(t) = u(t - 5) \)
 (b) (8%) \(x_1(t) = \cos(5t) u(t) \) and \(x_2(t) = \sin(3t) u(t) \).

 Note that \(u(t) \) is the unit step function.

5. (15%) Obtain the inverse Fourier transform of

 \[X(f) = \frac{\text{sinc} 2f}{3 + j2\pi f} \]

 where the sinc function is defined as \(\text{sinc} z = \frac{\sin \pi z}{\pi z} \).
6. (15%) The Fourier transforms of two signals, \(x(t) \) and \(y(t) \), are defined as

\[
X(f) = \begin{cases}
\cos(\pi f), & \text{if } |f| \leq 0.5 \\
0, & \text{otherwise}
\end{cases}
\]

\[
Y(f) = X(f - f_0) + X(f + f_0)
\]

(a) (4%) Find a closed-form expression for \(x(t) \).
(b) (4%) Find a closed-form expression for \(y(t) \).
(c) (7%) Design the system shown in the block diagram in terms of choosing the parameters \(A, f_1, \) and \(f_2 \) so that the output is \(y(t) \).

\[
\cos(2\pi f_2 t)
\]

7. (20%) **Find and plot** the impulse responses of the following systems

(a) (8%) an ideal high-pass filter with transfer function given by

\[
H_{hp}(f) = \left[1 - \Pi \left(\frac{f}{2B} \right) \right] e^{-j2\pi t_0 f}
\]

where \(\Pi(\frac{f}{2B}) = \begin{cases}
1, & |f| \leq B \\
0, & \text{otherwise}
\end{cases} \)

(b) (12%) an ideal notch filter whose phase response is linear,

\[
\theta(f) = -2\pi t_0 f
\]

and amplitude response is shown below

<table>
<thead>
<tr>
<th>(H(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-f_0)</td>
</tr>
</tbody>
</table>