In the following, \(\mathbb{R} \) denotes the set of all real numbers, \(n \) is any positive integer and \(\mathbb{R}^n \) is the Euclidean space containing all \(n \)-dimensional real column vectors. For \(1 \leq i \leq n \), let \(e_i \) be a column vector whose transpose is equal to
\[
\begin{pmatrix}
0, \cdots, 0, 1, 0, \cdots, 0
\end{pmatrix}.
\]
The set \(\{e_1, \ldots, e_n\} \) is known as the canonical basis for \(\mathbb{R}^n \).

1. (12%) Which descriptions are correct and why? The solutions \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) of
\[
Ax = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
form a plane, line, point, subspace, null space of \(A \), column space of \(A \).

2. Let \(F \) be a vector space of dimension \(n \). Let \(T \) be a linear transformation on \(F \). We call the matrix \(B = (b_{i,j})_{1 \leq i,j \leq n} \) the matrix of \(T \) in the basis \(\{v_1, \ldots, v_n\} \) if
\[
Tv_j = \sum_{k=1}^{n} b_{k,j} v_k \quad \forall j = 1, 2, \ldots, n.
\]
Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be defined by
\[
T \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} 3c - b \\ 3b - a \\ a \end{bmatrix}.
\]

(a) (6%) Verify that \(T \) is a linear transformation.
(b) (7%) Find the matrix of \(T \) in the canonical basis of \(\mathbb{R}^3 \).

3. Let \(\{e_1, \ldots, e_n\} \) be the canonical basis of \(\mathbb{R}^n \) and \(\{w_1, \ldots, w_n\} \) be another basis of \(\mathbb{R}^n \). Let \(C \) be the matrix whose columns are \(w_1, \ldots, w_n \). The matrix \(C \) is then called the matrix of the change of basis from \(\{e_1, \ldots, e_n\} \) to \(\{w_1, \ldots, w_n\} \).

(a) (7%) Prove that the matrix \(C \) is invertible.
(b) (7%) Let \(T \) be a linear transformation of \(\mathbb{R}^n \) and \(B \) be the matrix of \(T \) in the canonical basis. Regard \(B \) as a linear transformation of \(\mathbb{R}^n \) under the matrix multiplication. Then the matrix \(A \) of \(T \) in another basis \(\{v_1, \ldots, v_n\} \) of \(\mathbb{R}^n \) satisfies \(A = D^{-1}BD \), where \(D \) is the matrix changing the basis from \(\{e_1, \ldots, e_n\} \) to \(\{v_1, \ldots, v_n\} \).

4. (a) (7%) Write the ellipsoid \(\frac{x_1^2}{4} + \frac{x_2^2}{9} + \frac{x_3^2}{16} = 1 \) in the form of \(x^tAx = 1 \), where \(x^t = (x_1, x_2, x_3) \) is the transpose of \(x \).
(b) (7%) State any three equivalent definitions of a real symmetric matrix \(A \) to be positive definite.
(c) (7%) Let \(x \in \mathbb{R}^3 \) and \(B \) be a \(3 \times 3 \) matrix with real entries. Give conditions on \(B \) so that \(x^tBx = 1 \) represents as an ellipsoid in \(\mathbb{R}^3 \). Verify your claim.
5. Let $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation and A be the $n \times n$ matrix of T in the canonical basis of \mathbb{R}^n. Assume that T is a projection map, that is, $T^2 = T$.

(a) (5%) Prove that A has 1 as an eigenvalue with multiplicity at least $\dim R(T)$, where $\dim V$ is the dimension of V and $R(T)$ is the range of T.

(b) (5%) Show that the eigenvalue of A is either 0 or 1.

(c) (5%) Prove that A is similar to a diagonal matrix whose entries are either 0 or 1. (Two matrices P, Q are said to be similar if there exists an invertible matrix X such that $Q = X^T P X^{-1}$.)

(d) (5%) Show that the trace of A ($\text{tr} A$) satisfies $\text{tr} A = \dim R(T)$.

(e) (5%) Prove that the similarity in (a) is orthogonal (that is, X is an orthogonal matrix) if and only if A is symmetric.

6. For any $n \times n$ matrix K, we let $K_{i,j}$ denote the (i,j)-th entry of K for $1 \leq i, j \leq n$. In this setting, K is called a stochastic matrix if

$$0 \leq K_{i,j} \leq 1, \quad \sum_{j=1}^{n} K_{i,j} = 1 \quad \forall 1 \leq i, j \leq n.$$

Assume in the following that K is a stochastic matrix.

(a) (5%) Let $\rho(K)$ denote the spectrum of K, that is, the set of all eigenvalues of K. Prove that $|\lambda| \leq 1$ for all $\lambda \in \rho(K)$ and also $1 \in \rho(K)$.

(b) (5%) Show that if v is an n-dimensional row vector such that $vK = v$, then $|v| K = |v|$, where $|v| = (|v_1|, \ldots, |v_n|)$ as $v = (v_1, \ldots, v_n)$.

(c) (5%) K is said to be irreducible if, for any $1 \leq i, j \leq n$, there exists a positive integer $l = l_{i,j}$ such that the (i,j)-th entry of K^l, denoted by $(K^l)_{i,j}$, is positive, where K^l is the matrix obtained by multiplying K itself for l times. Prove that if K is irreducible, then 1 is a simple eigenvalue (that is, its multiplicity is one).