1. (a) Let matrix $A = [a_1, a_2, a_3]$, where a_1, a_2, a_3 are vectors in \mathbb{R}^3. If $4a_1 - 3a_2 + 2a_3 = 0$, find $\det(A)$.
 (2%)

(b) Given the Adjoint of matrix A denoted as $\text{adj}(A)$, find $\det(A)$, A, $\det(3A^{-1}A^T)$.

Where

\[
\text{adj}(A) = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 3 & 2 \\ -2 & -1 & 2 \end{pmatrix}
\]

(6%)

(c) For the linear system $Ax = b$ (6%)

(i) Find the rank of A and a basis for the column space of A.

(ii) Find a basis for the null space $N(A)$? What is the dimension of $N(A)$?

Where

\[
A = \begin{pmatrix} 0 & 1 & 1 & 3 & 4 \\ 1 & -2 & 1 & 1 & 2 \\ 1 & 2 & 5 & 13 & 5 \\ -1 & 3 & 0 & 2 & -2 \end{pmatrix}
\]

2. For this problem, just give the answer, no need to show your computation.

(a) Let L be the linear transformation of the reflection about the line $ax + by = 0$, from \mathbb{R}^2 to \mathbb{R}^2, where $a^2 + b^2 \neq 0$.

Find the matrix representation of L with respect to the standard basis, find the dimension of the kernel space, and find a basis of the range space. (6%)

(b) Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 having the following matrix representation with respect to the standard basis;

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

Find $L(L(v))$, where

\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

Find the dimension of the kernel space, and find a basis of the range space of L. (4%)

(c) Let A_1 be the matrix representation of a linear transformation L from \mathbb{R}^n to \mathbb{R}^n with respect to the basis B_1. Let B_2 be another basis of \mathbb{R}^n, and let P be the transition matrix corresponding to the change of basis from B_1 to B_2.

What is the matrix representation of L with respect to the basis B_2? Express it in terms of A_1 and P. (2%)
3. Given an m by n matrix \(A = [a_{11}, a_{12}, \ldots, a_{mn}] \), where \(a_i \neq a_j \) if \(i \neq j \), \(1 \leq i, j \leq n \).

 (a) What can you say regarding the properties of \(A^TA \)? (at least 3 statements to be made for full score of 4 points) (4%)

 (b) Let \(m=n=3 \) and \(f(x) = Ax \). Give two specific examples of \(A \) and explain the kinds of geometric operations thus involved respectively. (8%)

4. Let \(A = [a_{ij}] \) be an \(n \times n \) matrix with eigenvalues \(\lambda_1, \ldots, \lambda_n \). Show that

 \[\sum_{j=1}^{n} (\lambda_j - a_{jj}) = 0. \] (6%)

5. Compute \(\cos(A) \) for \(A = \begin{bmatrix} -2 & -6 \\ 1 & 3 \end{bmatrix} \). (6%)

6. Student A and student B are asked to solve the same initial value problem:
 \[y'' + ay' + by = 0, \ y(0) = c, \ y'(0) = d. \] Unfortunately, student A mistook the constants \(a \) and \(c \) and got the solution \(y(t) = -2e^{-3t} - e^t \). Student B mistook the constants \(b \) and \(d \) and obtained the solution \(y(t) = e^t(-\cos 2t + \sin 2t) \). Assume we can trust these two students' capability of solving differential equations.

 i. (4%) What are the correct numbers of \(a, b, c, \) and \(d? \)

 ii. (10%) Solve the original initial value problem: \(y'' + ay' + by = 0, \ y(0) = c, \ y'(0) = d. \)

7. (12%) Solve \(x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} - 11x \frac{dy}{dx} + 16y = x^{-4}, \ x > 0.\)

8. (12%) Find a general solution of the system:
 \[\begin{cases} x' = x + 2y + 3z \\ y' = y + 2z \\ z' = -2y + z \end{cases} \]

9. (12%) Determine the inverse Laplace transform of the function \(X(s) = \frac{2s^2 + 9s + 1}{(s+1)^2(s-2)}. \)