1. (15 %) Use Green's theorem to find the line integral
\[\oint_C y \, dx + x^2 \, y \, dy, \]
where \(C \) is the closed curve formed by \(x^2 = 4x \) and \(y^2 = 2x \) between (0,0) and (2,2).

2. (15 %) Find the extrema of the function
\[f(x) = \sin x + \cos x. \]
Sketch the graph for \(0 \leq x \leq 2\pi \).

3. (15 %) A cylindrical tank of 4 m in diameter and 10 m long is half full of water. If the tank is lying on its side, find the total vertical force \(F \) (in Newton) exerted by the water on the tank. (density of water \(\approx 1000 \) kg/m\(^3\))

![Diagram of a cylindrical tank with forces](attachment:image.png)

4. (15 %) Evaluate the inverse Laplace transform, \(g(t) \), of the following function:
\[\frac{e^{-4s}}{s + 2} \]
Plot \(g(t) \).

5. (20 %) (i) Let \(A \) be a \(n \times n \) matrix. If for some nonzero \(n \times 1 \) matrix \(X \), \(AX = \lambda X \), then what is \(X \) called? \(\lambda \) is a real or complex number.
(ii) What is the characteristic polynomial of \(A \)?
(iii) What is the name of the solutions to the characteristic polynomial?
(iv) Find all the eigenvalues and the corresponding eigenvector of each eigenvalue for the following matrix:
\[
\begin{bmatrix}
-5 & 0 \\
1 & 2
\end{bmatrix}
\]
6. (20%) (i) Derive the trapezoidal rule for approximating the integral as

\[\int_a^b f(x)dx = \frac{b-a}{n}(y_0 + 2y_1 + 2y_2 + ... + 2y_{n-1} + y_n) \]

Where \(y_j = f(x_j) \) for the chosen partition \(a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b \), and \(h \) is the spacing between successive partition points. \(h = \frac{b-a}{n} \), and \(n \) is an integer.

(ii) Approximate the following integral by using the trapezoidal rule with \(n = 2 \) and 4:

\[\int_0^1 \frac{dx}{\sqrt{x^2 + 2x + 12}} \]