1. (18%) Consider a “binary search tree”, T. Answer TRUE or FALSE to each of the following statements.
 (a) The root of T has the largest key.
 (b) T is a complete binary tree.
 (c) If there are \(n \) nodes in T, among those \(\lfloor n/2 \rfloor \) are leaves (terminal nodes).
 (d) Root is at level 0 (\(\text{level}(\text{root})=0 \)), and the level of node \(p \) is defined to be \(\text{level}(\text{parent}(p))+1 \) where \(\text{parent}(p) \) denotes the parent of \(p \). Number of nodes in level \(k \) is \(2^k \).
 (e) The height of a tree is defined to be the largest level of any node in the tree.
 The height of a complete binary search tree is \(O(\log n) \).
 (f) The height of any binary search tree has height \(\Omega(\log n) \).

2. (7%) When storing data of a tree, we usually convert the tree to a binary tree (left child-right sibling) representation. Why do we prefer to have a binary tree representation of a tree that has arbitrary degree?

3. (10%) Array is a data structure that supports random access an entry. That means \(A[i] \) can be stored or retrieved in constant time. Explain why \(A[i] \) can be accessed in constant time. What if we have a 2-dimensional array, i.e., how can \(A[i][j] \) be accessed in constant time?

4. (15%) Divide and Conquer: We solve a problem by dividing the problem into two sub-problems, solve the two sub-problems, finally we obtain the solution to the original problem by merging the solutions to the sub-problems. Suppose that the time required by dividing and merging is \(cn \), where \(n \) is the problem size. Please give the recurrence of \(T(n) \) that describes the time required for solving the original problem. And then solve \(T(n) \).

5. (25%) Briefly answer the following questions:
 (a) Summarize the distinction between top-down and bottom-up strategies when designing a system.
 (b) What is an entity-relationship diagram? What is the difference between a entity-relationship diagram and a class diagram?
 (c) Explain the MVC design pattern. And give the benefits of the MVC structure.
 (d) What is eXtreme Programming?
 (e) Explain RPC, RMI, and CORBA technologies.

6. (15%) (a) Distinguish buffer and cache. (b) Explain how the digital signature works?
 (c) Explain dead lock with example. List the necessary conditions of dead lock.

7. (10%) Consider the programming languages and language processing.
 (a) List all type of statements supported by an imperative programming language.
 (b) What is a parsing tree? What is an expression tree? Explain them with examples.