1. Evaluate the following indefinite integrals
(a) \[\int x^2 e^{\alpha x} \, dx \] (10%)
(b) \[\int \frac{1}{\sin x} \, dx \] (10%)

2. Show that
(a) If \(B \) is a symmetric matrix, show that matrix \((A^T BA - ABA^T) \) is a symmetric matrix (5%)
(b) If matrix \(A \) satisfies \(A = AA^T \), then the eigenvalues of \(A \) are 0 or 1. (5%)

3. Solve the following differential equations
(a) \(y'' + y = x \) (10%)
(b) \(y'' - 2y' + y = e^x + x \) (10%)

4. Solve the following partial differential equation for \(u(x, y) \):
\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u \] (15%)

5. Show that
\[\frac{1}{\sqrt{1 - 2xu + u^2}} = \sum_{n=0}^{\infty} P_n(x)u^n \]
This function on the left is called a generating function of the Legendre polynomials.

Hint: Start from the binomial expansion of \(\frac{1}{\sqrt{1 - v}} \), set \(v = 2xu - u^2 \), multiply the power of \(2xu - u^2 \) out, collect all the terms involving \(u^n \), and verify that the sum of these terms is \(P_n(x)u^n \). (15%)

6. In each case show that the given set is orthogonal on the given interval \(I \) and determine the corresponding orthonormal set.
(a) \(1, \cos x, \cos 2x, \cos 3x, \ldots \), \(I: 0 \leq x \leq 2\pi \) (10%)
(b) \(\sin \frac{n\pi}{L} x \) \((n=1, 2, 3, \ldots) \), \(I: -L \leq x \leq L \) (10%)