1. Solve following non-homogeneous differential system: \((15\%) \)
\[
\frac{dx}{dt} = -2x + y \\
\frac{dy}{dt} = -4x + 3y + 10\cos t
\]

2. Let \(f(x, y, z) \) be a harmonic function in some domain \(D \). Show that the integral of the normal derivative of the function \(f \) over any piecewise smooth closed orientable surface \(S \) in \(D \) is zero. \((15\%) \)

3. Solve following partial differential equation: \((20\%) \)
\[
x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = xt, \quad u(x, 0) = 0 \text{ if } x \geq 0, \quad u(0, t) = 0 \text{ if } t \geq 0.
\]

4. If a plane curve is represented in the form \(y = f(x), z = 0 \), show that its length between \(x = a \) and \(x = b \) is \((15\%) \)
\[
l = \int_a^b \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{1/2} dx
\]

5. Heat will flow in the direction of maximum gradient of temperature decay. If a temperature potential can be represented by \(T = \cos x \cosh y \),
 (1) Find the direction of heat flow at a point of \((\pi/2, 2) \). \((7\%) \)
 (2) Find the possible positions where the heat flows in the vertical direction. \((8\%) \)

6. (1) Find the Fourier series of \(f(t) = t + \pi, -\pi < x < \pi, f(t) = f(t + 2\pi) \). \((12\%) \)
(2) If a spring system under an external force of \(f(t) \) can be represented by
\[
y'' + \omega^2 y = f(t), \text{ please find the particular solution only.} \quad (8\%)
\]

Note: Fourier series
\[
a_0 = \frac{1}{2L} \int_{-L}^{L} f(t) dt, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} dt
\]