1. (15%) Prove the convolution theorem of the Laplace transform.

2. (20%) Find the general solution for
\[x^3 y''' - 2x^2 y'' + 3xy' - 3y = 2x + 3x^3, \]
where \(y \) is a function of \(x \).

3. (15%) Find the general solution for
\[y' = (y + x)(y + x - 2) - 1 \]
where \(y \) is a function of \(x \).

4. (10%) Given a function \(\Phi(x, y) = k \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right) \), find the directional derivative of \(\Phi \) along its boundary curve \(C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

5. (10%) Given a vector field \(\mathbf{F} = xi + yj + zk \), evaluate the surface integral
\[\iint_S \mathbf{F} \cdot \mathbf{n} \, dA \]
over the surface \(S: r = (u \cos v, u \sin v, uv) \) \(0 \leq u \leq 2, -\pi \leq v \leq \pi \) where \(\mathbf{n} \) is the outer unit vector of \(S \).
(Note: \(\iint_S \mathbf{F} \cdot \mathbf{n} \, dA = \iiint_r \mathbf{F}(r(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv \) where \(\mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v \))

6. Given \(A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} \)

(a) Find the eigenvalues and eigenvectors of \(A \). (10%)

(b) Let \(\mathbf{P} \) be the eigenvector matrix consisting of the eigenvectors of \(A \), find \(\mathbf{P}^{-1} \) using the method of Gauss-Jordan elimination. (10%)

(c) Show that the eigenvalues of the similarity matrix \(\hat{A} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \) are the same as \(A \) and the eigenvectors of \(\hat{A} \) are \(\mathbf{P}^{-1} \mathbf{x} \) where \(\mathbf{x} \) is the eigenvector of \(A \). (10%)