1. (6%) Can the function below be autocorrelation function of a wide-sense stationary (WSS) random process? Justify your answer.

(a) \[S_y(f) = H(f)H(-f)S_x(f) \]

(b) \[Y(t) = \int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau \]

(c) \[S_y(f) = H(f)\bar{S}_x(f) \]

2. (a) (6%) Prove that \(S_y(f) = H(f)H(-f)S_x(f) \) if \(Y(t) = \int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau \), where \(S_x(f) \) and \(S_y(f) \) are respectively the power spectral densities (PSDs) of the real-valued WSS signals \(X(t) \) and \(Y(t) \), and \(H(f) \) is the Fourier transform of the filter impulse response \(h(\tau) \).

(b) (4%) Show that the relation in (a) can be reduced to \(S_y(f) = |H(f)|^2 S_x(f) \), if \(h(\tau) \) is real.

(c) (4%) Use (b) to prove that the PSD of a real-valued WSS process is always non-negative.

3. In the figure below, \(\{a_n\} \) are unit impulses with amplitude \(\pm 1 \), whereas \(G(f) \), \(H(f) \) and \(C(f) \) are transfer functions corresponding to the impulse responses \(g(t) \), \(h(t) \) and \(c(t) \), respectively.

(a) (5%) In absence of noise \(w(t) \), namely, \(w(t) = 0 \), describe the Nyquist criterion for zero-ISI in the above baseband transmission system.

(b) (5%) Describe the model of the ideal Nyquist channel.

(c) (5%) Consider a rectangular pulse \(g(t) \), and a known channel impulse response \(h(t) \) as:
\[
g(t) = \begin{cases} 1, & 0 \leq t < T_b \\ 0, & \text{otherwise} \end{cases}
\]
and \(h(t) = \delta(t) + \delta(t - T_b) \).
where \(\delta(x) \) is the Dirac delta function. Find the matched filter impulse response \(c(t) \) that maximizes the signal-to-noise ratio at the output of the sampler in presence of the white noise \(w(t) \).

(d) (5%) Does \(c(t) \) in (c) satisfy the Nyquist Criterion? Justify your answer.

4. Consider a discrete memoryless source \(S \) with source alphabet \(S = \{ s_1, s_2, \ldots, s_K \} \) and occurrence probabilities \(\{ p_1, p_2, \ldots, p_K \} \).

(a) (10%) Denote the entropy of \(S \) as \(H(S) \). Find the values of \(p_1, p_2, \ldots, p_K \) so that \(H(S) \) is maximized. Prove your result.

(b) (10%) The second-order extension of this source is another discrete memoryless source \(T \) with source alphabet \(S^2 = \{ l_1, l_2, \ldots, l_M \} \), where \(M = K^2 \). Denote the occurrence probabilities of \(T \) as \(\{ q_1, q_2, \ldots, q_M \} \) and its entropy as \(H(T) \). Derive the relationship between \(H(S) \) and \(H(T) \).

5. Consider the (7,4) Hamming code defined by the generator polynomial \(g(X) = 1 + X + X^3 \).

(a) (4%) Find its parity-check polynomial \(h(X) \).

(b) (6%) If the received word is represented as \(r(X) = X + X^3 + X^5 \), determine

(i) the syndrome polynomial \(s(X) \) for this received word, and

(ii) the decoded message polynomial \(m(X) \).

6. Let \(\phi_1(t) = \cos w_1 t + \cos w_2 t, \quad \phi_2(t) = \cos w_1 t - \cos w_2 t, \quad w_1 = \frac{2\pi}{T}, w_2 = \frac{4\pi}{T} \) and \(T \) be the symbol duration.

(a) (5%) Are \(\phi_1(t) \) and \(\phi_2(t) \) orthogonal functions? Please verify your answer.

(b) (10%) If \(p_2(t) = a\phi_1(t) + b\phi_2(t) \) and \(p_2(t) = a\phi_1(t) - b\phi_2(t) \) are orthonormal basis functions, specify \((a, b)\) accordingly.

7. An FSK signal is given as:

\[
 s_0(t) = \frac{2E_b}{T} \cos w_0 t, \quad s_1(t) = \frac{2E_b}{T} \cos w_1 t
\]

where \(E_b \) is the bit energy, \(T \) is the bit duration and \(\{\cos w_0 t, \cos w_1 t\} \) is an orthogonal basis. The received signal \(x(t) = s_i(t) + w(t), \quad i = 0, 1, \) and \(w(t) \) is the added white gaussian noise with two-sided power spectral density \(N_0/2 \).

(a) (5%) Show the optimum receiver structure to detect \(x(t) \) and explain why it is optimum.

(b) (10%) Derive the corresponding bit error probability.