Notations.

1. The letter \(\mathbb{R} \) denotes the set of real numbers. Hence, the notation \(\mathbb{R}^n \)
 represents the usual Euclidean space of dimension \(n \).

2. The identity matrix of size \(n \) is denoted by \(I_n \).

3. For a matrix \(A \), we let \(A^t \) denote the transpose of \(A \), \(\text{tr} A \) the trace of
 \(A \), and \(|A| \) the determinant of \(A \). For a nonsingular square matrix \(B \),
 the notation \(B^{-1} \) means the inverse of \(B \).

4. For a given vector space \(V \), the notation \(\dim V \) denotes the dimension of \(V \). If \(S \) and \(T \)
 are subspaces of \(V \), then \(S + T \) denotes the subspace \(\{ u + v : u \in S, v \in T \} \).

5. If \(T \) be a linear transformation, then \(\text{Ker} T \) is the kernel of \(T \), while \(\text{Im} T \)
 is the image of \(T \).

6. The notation \(M_n(\mathbb{R}) \) represents the set of all \(n \times n \) matrices over \(\mathbb{R} \).

Problems.

1. (15 points.) Let \(\mathcal{U} \) be the solution space of
 \[x_1 - x_2 + x_3 - x_4 = 0 \]
 in \(\mathbb{R}^4 \) and \(\mathcal{V} \) be the solution space of
 \[x_1 - 2x_2 + x_4 = 0 \]
 \[2x_1 - x_2 + x_3 - x_4 = 0 \]
 \[x_2 - x_3 - x_4 = 0 \]
 in \(\mathbb{R}^4 \). Is there a linear transformation \(T : \mathbb{R}^4 \to \mathbb{R}^4 \) so that \(Tu = u \)
 for all \(u \in \mathcal{U} \) and \(\text{Ker} T = \mathcal{V} \)? If so, represent \(T \) in matrix with respect to
 a basis of your choice of \(\mathbb{R}^4 \). Justify your answer.

2. (15 points.) Let
 \[B = \begin{pmatrix} 1 & 3 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{pmatrix}. \]
 Find all \(3 \times 3 \) real matrices \(A \) such that \(A^2 = B \). Justify your answer.

3. (10 points.) Let \(A \) be a real \(2 \times 2 \) matrix with positive entries. Prove or disprove
 that there is an eigenvector \(v \) of \(A \) such that its components are all positive.

4. (10 points.) Prove that for \(n \geq 2 \)
 \[\begin{pmatrix} 1 & 1 & \ldots & 1 \\ x_1 & x_2 & \ldots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \ldots & x_n^{n-2} \\ x_1^n & x_2^n & \ldots & x_n^n \end{pmatrix} = \left(\sum_{j=1}^{n} x_j \right) \begin{pmatrix} 1 & 1 & \ldots & 1 \\ x_1 & x_2 & \ldots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \ldots & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \ldots & x_n^{n-1} \end{pmatrix}. \]
5. Let \(\mathcal{V} \) be a vector space of finite dimension. Let \(S, T, \) and \(U \) be vector subspaces of \(\mathcal{V} \). Prove or disprove (by giving a counterexample) the following two formulas.

1. (10 points.) \(\dim(S + T) = \dim S + \dim T - \dim(S \cap T) \).
2. (10 points.) \(\dim(S + T + U) = \dim S + \dim T + \dim U - \dim(S \cap T) - \dim(T \cap U) - \dim(U \cap S) + \dim(S \cap T \cap U) \).

6. (1) (3 points.) Prove that any square matrix can be written as a sum of a symmetric matrix and a skew-symmetric matrix.

2. (6 points.) Let the linear transformation \(T : M_n(\mathbb{R}) \mapsto M_n(\mathbb{R}) \) be defined by \(T(A) = A^t \). Determine the eigenvalues and eigenspaces of \(T \).

3. (6 points.) Determine whether \(T \) is diagonalizable. If yes, diagonalize it; if not, prove it is not.

7. Let

\[
A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}
\]

1. (5 points.) Find a matrix \(P \) such that \(P^{-1}AP \) is diagonal.

2. (5 points.) Find the maximum of \(X^tAX \) among all \(X \in \mathbb{R}^3 \) subject to \(X^tX = 1 \). Give an example of \(X \) that attains the maximum. Justify your answer.

3. (5 points.) Find the minimum of \(\text{tr}(Y^tAY) \) among all \(3 \times 2 \) matrices \(Y \) subject to \(Y^tY = I_2 \). Give an example of \(Y \) that attains the minimum. Justify your answer.