Notations.

1. The letter \mathbb{R} denotes the set of real numbers. Hence, the notation \mathbb{R}^n represents the usual Euclidean space of dimension n.
2. The identity matrix of size n is denoted by I_n.
3. For a matrix A, we let A^t denote the transpose of A, $\text{tr} A$ the trace of A, and $|A|$ the determinant of A. For a nonsingular square matrix B, the notation B^{-1} means the inverse of B.
4. For a given vector space \mathcal{V}, the notation $\dim \mathcal{V}$ denotes the dimension of \mathcal{V}. If S and T are subspaces of \mathcal{V}, then $S + T$ denotes the subspace \{ $u + v : u \in S, v \in T$ \}.
5. If T be a linear transformation, then $\text{Ker} T$ is the kernel of T, while $\text{Im} T$ is the image of T.
6. The notation $M_n(\mathbb{R})$ represents the set of all $n \times n$ matrices over \mathbb{R}.

Problems.

1. (15 points.) Let \mathcal{U} be the solution space of
\[x_1 - x_2 + x_3 - x_4 = 0 \]
in \mathbb{R}^4 and \mathcal{V} be the solution space of
\begin{align*}
 x_1 - 2x_2 + x_4 &= 0 \\
 2x_1 - x_2 + x_3 - x_4 &= 0 \\
 x_2 - x_3 - x_4 &= 0
\end{align*}
in \mathbb{R}^4. Is there a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ so that $Tu = u$ for all $u \in \mathcal{U}$ and $\text{Ker} T = \mathcal{V}$? If so, represent T in matrix with respect to a basis of your choice for \mathbb{R}^4. Justify your answer.

2. (15 points.) Let
\[B = \begin{pmatrix} 1 & 3 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{pmatrix}. \]

Find all 3×3 real matrices A such that $A^2 = B$. Justify your answer.

3. (10 points.) Let A be a real 2×2 matrix with positive entries. Prove or disprove that there is an eigenvector \mathbf{v} of A such that its components are all positive.

4. (10 points.) Prove that for $n \geq 2$
\[
\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix} = \left(\sum_{j=1}^{n} x_j \right) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix}
\]
5. Let \mathcal{V} be a vector space of finite dimension. Let S, T, and U be vector subspaces of \mathcal{V}. Prove or disprove (by giving a counterexample) the following two formulas.

1. (10 points.) $\dim(S + T) = \dim S + \dim T - \dim(S \cap T)$.
2. (10 points.) $\dim(S + T + U) = \dim S + \dim T + \dim U - \dim(S \cap T) - \dim(T \cap U) - \dim(U \cap S) + \dim(S \cap T \cap U)$.

6. (1) (3 points.) Prove that any square matrix can be written as a sum of a symmetric matrix and a skew-symmetric matrix.

2. (6 points.) Let the linear transformation $T: M_n(\mathbb{R}) \mapsto M_n(\mathbb{R})$ be defined by $T(A) = A^t$. Determine the eigenvalues and eigenspaces of T.

3. (6 points.) Determine whether T is diagonalizable. If yes, diagonalize it; if not, prove it is not.

7. Let

$$A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}.$$

1. (5 points.) Find a matrix P such that $P^{-1}AP$ is diagonal.

2. (5 points.) Find the maximum of X^tAX among all $X \in \mathbb{R}^3$ subject to $X^tX = 1$. Give an example of X that attains the maximum. Justify your answer.

3. (5 points.) Find the minimum of $\text{tr}(Y^tAY)$ among all 3×2 matrices Y subject to $Y^tY = I_2$. Give an example of Y that attains the minimum. Justify your answer.