1. Let $F(x)$ be the value of the cumulative distribution function of the continuous variable X at x.
 a. Find the probability density function of $Y = F(X)$. (10%)
 b. Describe one possible application of the result in a. (10%)

2. If X is a random variable having a normal distribution with mean μ and the variance σ^2. Derive the following moments for X:
 a. $E\{X\}$ (10%)
 b. $E\{(X - \mu)^4\}$ (10%)

3. Assume X and Y are independent random variables with $X \sim N(0, 1)$ and $Y \sim \text{Bernoulli}(p)$, where $0 < p < 1$. Define $Z = X$ if $Y = 1$ and $Z = -X$ if $Y = 0$.
 a. Find the probability function of Z. (10%)
 b. Find the covariance of X and Z. (10%)

4. Suppose that X_1, \ldots, X_m and Y_1, \ldots, Y_n are independent random samples from normal distributions with respective unknown means μ_X, μ_Y and common variance σ^2.
 a. Find the maximum likelihood estimators of μ_X, μ_Y and σ^2. (10%)
 b. Construct a likelihood ratio test of H_0: $\sigma^2 = \sigma_0^2$ against H_1: $\sigma^2 = \sigma_1^2$. (10%)

5. Consider a distribution having a probability mass function of the form

 $p(x, p) = p^x(1-p)^{1-x}, x = 0, 1.$

 Let H_0: $p = 0.05$ and H_1: $p > 0.05$.
 a. Find the uniformly most powerful test of H_0 against H_1. (10%)
 b. Use the central limit theorem to determine the sample size n of a random sample so that a uniformly most powerful test of H_0 against H_1 has a power function $g(p)$, with approximately $g(0.05) = 0.05$ and $g(0.10) = 0.95$. (10%)