1. (20%)
(a) Write down the time-dependent Maxwell equations in Differential and Integral Form (using E, B, H, J, D).
(b) Derive the continuity equation from the Maxwell equations.
(c) State Faraday’s law and Ampere’s Law.

2. (15%) Given six air-filled rectangular waveguides of the following inner dimensions:
(a) 40 cm X 40 cm (b) 20 cm X 20 cm (c) 4 cm X 4cm (d) 2cm X 1cm
(e) 0.4 cm X 0.4 cm (f) 0.2 cm X 0.1 cm
Determine in which waveguides the TE_{10} mode can propagate and in which waveguides only the TE_{10} mode can propagate. The frequency $f = 10$GHz
(Hint: find out cutoff frequency)

3. (20%) Using Drawing and formula
(a) Explain Phase velocity, group velocity (5%)
(b) State Parallel Polarization and Perpendicular Polarization (5%)
and write the E, H expression.
(c) Explain Brewster angle (5%)
(d) Explain the Hall effect (5%)

4. (20%) Consider the transmission line circuit below composed of two air-filled transmission lines of different characteristic impedances as shown. The switch has been in position A for $t < 0$ and at $t = 0$ switches to position B.

(a) Sketch the voltage $V(z)$ on both lines ($0 < z < 2l$) for $t < 0$.
(b) Sketch the voltage $V(z)$ on both lines ($0 < z < 2l$) for $t = l/(2v)$.
(c) At what time t will the circuit reach steady-state.
5. (25%) Two plane waves with wave-vectors \vec{k}_1 and \vec{k}_2 are incident upon a flat surface which separates the space into two regions as shown in Fig 2 below. The upper half space is free space, and the lower half space is a dielectric medium with $\varepsilon = 5\varepsilon_0$ and $\mu = \mu_0$. The total electrical field in the upper half space (Region 1) is $\vec{E}_i + \vec{E}_a$, and the total electric field in the lower half space (Region 2) is $\vec{E}_2 + \vec{E}_b$.

The incident field \vec{E}_i is given by $\vec{E}_i = \hat{y}E_0 \cos(\frac{k}{\sqrt{2}}(x-z) - \omega t)$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{}
\end{figure}

(a) What is the incident angle θ_1 for \vec{k}_1?

(b) Find the reflection coefficient R_{12} of \vec{E}_1. What is the reflected field of \vec{E}_a?

(c) Let the field \vec{E}_a be 0, and the incident field \vec{E}_2 be a TE wave. What are \vec{E}_2 and \vec{E}_b?

(d) Let the field \vec{E}_a be right-handed circularly polarized (r. h. c. p.) and the incident field \vec{E}_b be a TM wave. Write down the expression for \vec{E}_a. Find the incident field \vec{E}_2?