1. (a) A sphere rolls down an incline without slipping as shown in the figure. Calculate the speed of its center of mass \(v_{CM} \) at the bottom. Momentum of inertia of a sphere rotating through the center is \(I = \frac{2}{5}MR^2 \). (10%) (b) What is the minimum static friction coefficient \(\mu \) of the slope to sustain the pure rolling? (10%)

2. (a) A damped oscillator of mass \(m \) and the force constant \(k \) is driven by a force \(F = F_0 \cos \omega t \). The damping force is \(-b \vec{v} \), where \(b \) is the damping constant. Find the \(\omega \) dependence of the oscillation amplitude \(A \). Plot \(A \) vs. \(\omega \) for small and large \(b \), respectively. When \(\omega = \omega_0 = (k/m)^{1/2} \), \(A \) has its maximum. This is called resonance. (10%) (b) Give two examples of resonance. (10%)

3. By the first law of thermodynamics, explain why air at the top of a mountain is cold. (10%)

4. In a hot day, if you open the door of a refrigerator to try to cool your room, will it work? Why or Why not? (10%)

5. Why is the high voltage used in transmission of the electric power from the power plant to the city? (10%)

6. (a) Give an example to show that the magnetic moment \(\vec{\mu} \) feels a torque in a magnetic field \(\vec{B} \) by \(\vec{\tau} = \vec{\mu} \times \vec{B} \). (10%) (b) From the result in (a), show that the potential energy of a magnetic moment is \(-\vec{\mu} \cdot \vec{B} \). (10%)

7. (a) How do you generate an electromagnetic (EM) wave? (5%) (b) The propagating intensity of an EM wave is described by the Poynting vector \(\vec{S} \). What is the expression of \(\vec{S} \) in \(\vec{E} \) and \(\vec{B} \) for an EM wave? (5%)