1. If an electric circuit contains a resistor R (ohms) and a capacitor C (farads) in series.

 The charge q (coulombs) on the capacitor is given by

 $$ R \frac{dq}{dt} + \frac{q}{C} = E \quad E \text{ in volts.} $$

 If $i = \frac{dq}{dt}$, assume $i = 5$ amperes when $t = 0$, find i ($R = 10$ ohms, $C = 10^{-3}$ farads, and $E(t) = 100 \sin 120\pi t$ volts). \hspace{1cm} (12\%)

2. Solve the system

 $$ \frac{dx}{dt} + x - y - z = t $$
 $$ \frac{dx}{dt} + 2 \frac{dy}{dt} + \frac{dz}{dt} - y = 0 $$
 $$ \frac{dx}{dt} - \frac{dy}{dt} - 4x + y = 6e^{2t} - 1 \quad (13\%) $$

3. Expand the function $f(x) = e^x$ in terms of eigenfunctions of the Sturm-Liouville problem

 $$ \frac{d^2y}{dx^2} + \lambda y = 0 $$

 with boundary conditions

 $$ y'(0) = 0 $$
 $$ y(\pi) = 0 \quad (15\%) $$

4. Find and discuss the general solution of the general second order Euler-Cauchy differential equation in detail. \hspace{1cm} (10\%)
5. Let \((x,y,z)\) represent the coordinates of a point in Euclidean space \(E_3\). Consider the operator defined by the following equations:

\[
\begin{align*}
 x' &= 2x + y + z \\
 y' &= -3x - y + 2z \\
 z' &= x - 3z
\end{align*}
\]

Show that the subspace defined by \(x + y + z = 0\) is invariant under this operator.

Find the representation of this operator in the subspace and find the eigenvalues of the representation. (12 %)

6. Let \(V\) be a finite dimensional space over \(C\), with a positive definite Hermitian form \(\langle , \rangle\).

Let \(A: V \rightarrow V\) be a linear map. Show that the following conditions are equivalent:

[A] We have \(AA^* = A^*A\).

[B] For all \(v \in V\), \(\|Av\| = \|A^*v\|\) (where \(\|v\| = \sqrt{\langle v, v \rangle}\)).

[C] We can write \(A = B + iC\), where \(B, C\) are Hermitian and \(BC = CB\).

(13 %)

7. Let the 3x3 matrix be defined as

\[
B = \begin{bmatrix}
1 & 0 & 0 \\
9 & -8 & 9 \\
6 & -6 & 7
\end{bmatrix}
\]

(a) Compute the eigenvalues of the matrix \(B\).

(b) Find a 3x3 matrix \(C\), a 3x3 matrix \(D\) and a real constant \(\alpha\) that satisfy the following equation: \(B^n = C + D\alpha^n\), \(n \in \mathbb{Z}, n \geq 1\). The integer \(n\) is greater than or equal to one. (10 %)
8. Let the 4×5 matrix be defined as

$$A = \begin{bmatrix} 1 & -2 & 3 & 0 & 0 \\ 3 & -7 & 9 & -2 & -3 \\ 1 & 3 & 3 & 4 & 9 \\ 1 & 1 & 3 & 7 & 10 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}$$

(a) Compute the rank of the matrix A. Hint: compute the reduced row echelon form of the matrix A.

(b) We can use the column vectors of the matrix A to form a basis for the column space of the matrix A. The set of all column vectors is denoted as the set S, where $S = \{a_1, a_2, a_3, a_4, a_5\}$. Find a set $V \subset S$, where V contains several vectors from the set S. This subset can form a basis for the column space of the matrix A. Hint: The selection can be deduced from the reduced row echelon form of the matrix A.

(c) Compute the dimension of the null space for the matrix A. The value is denoted as $\dim N(A)$ or the nullity of the matrix A. (15%)