1. The 6-kg circular disk and attached shaft rotate at a constant speed of 10,000 rev/min. If the center of mass of the disk is 0.05 mm off center, determine the magnitudes of the horizontal forces A and B supported by the bearings.

2. A small particle of mass m is attached to two highly tensioned massless wires of length L each in the horizontal direction; hence, the particle is located between the wires. Determine the system natural frequency for small vertical oscillations if the tension T in both wires is assumed to be constant.
3. The hoop is cast on the rough surface such that it has an angular velocity $\omega = 4 \text{ rad/s}$ and an angular deceleration $\alpha = 5 \text{ rad/s}^2$. Also, its center has a velocity of $v_O = 5 \text{ m/s}$ and a deceleration $a_O = 2 \text{ m/s}^2$. Determine the acceleration of point A at this instant.

4. The 10-kg rod AB shown in the figure is confined so that its ends move in the horizontal and vertical slots. The spring has a stiffness of $k = 800 \text{ N/m}$ and is unstretched when $\theta = 0^\circ$. Determine the angular velocity of AB when $\theta = 60^\circ$. If AB is released from rest when $\theta = 30^\circ$, neglect the mass of the slider blocks.
5. The structure shown is composed of eight two-force members of equal length \(\ell \) and a rigid frame BCD of length \(2\ell \). All members in the structure are pin-connected together and their weights are ignored. If the structure is subjected to a vertical downward force \(P \) at joint G, determine the axial force in member CG.

\[\text{(16 \%)} \]

6. Two rigid bars AB and BC of negligible weight are attached to a rotational spring of constant \(K \) at point B. The rotational spring obeys the Hooke’s law, \(M = K \theta \), where \(M \) is an applying moment and \(\theta \) the deformed angle. The spring is undeformed when the bars are horizontal. Two equal and opposite, horizontal forces \(P \) and \(-P \) are applied at both ends A and C. Determine the range of the magnitude \(P \) for which the equilibrium of the system is stable in the position shown.

\[\text{(16 \%)} \]