I. (10%) For what values of a and b does the improper integral
\[\int_{0}^{\infty} \frac{x^{a}}{1+x^{b}} \, dx \] converge? Justify your answer.

II. (12%) Determine whether the following sequences of functions converge uniformly. Justify your answer.

(a) \(f_{n}(x) = \frac{1}{1 + n x} \) \(\forall x \in [0, 1] \), \(n \in \mathbb{N} \).

(b) \(f_{n}(x) = \frac{1}{1 + n x} \) \(\forall x \in [2, \infty) \), \(n \in \mathbb{N} \).

III. (12%) Let \(f(x) = \begin{cases} 0 & \text{if } x = \frac{1}{n}, \forall n \in \mathbb{N}, n \neq 1 \smallsetminus 1, \\ 1 & \text{otherwise}. \end{cases} \)

Riemann integrable on \([0, 1]\\)? Justify your answer.

IV. (14%) Let \(g(x, y) = \begin{cases} \frac{x y}{x^{2} + y^{2}} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \).

(a) Prove that \(g \) is continuous at \((0, 0)\).

(b) Is \(g \) differentiable at \((0, 0)\)? Justify your answer.

V. Suppose that \(f: \mathbb{R} \to \mathbb{R} \) is a non-zero differentiable function with the property that \(f(x+y) = f(x) \cdot f(y) \) \(\forall x, y \in \mathbb{R} \).

Prove that \(f(x) = e^{ax} \) for some \(a \in \mathbb{R} \).

VI. (12%) Let \(I \) be an interval containing \(x_0 \) and suppose that the function \(f: I \to \mathbb{R} \) is \(n \)-times differentiable and \(f^{(n)}(x) \) is continuous in \(I \). Show that if \(f^{(k)}(x_0) = 0, \forall k = 1, 2, 3 \) and \(f^{(n)}(x_0) \neq 0 \), then \(f(x_0) \) is a local extremum of \(f \).
VII. (10%) Suppose that the functions \(g : \mathbb{R} \to \mathbb{R} \) and \(h : \mathbb{R} \to \mathbb{R} \) have continuous 2nd-order derivatives. Define the function \(U : \mathbb{R}^2 \to \mathbb{R} \) by \(U(s, t) = g(s-t) + h(s+t) \) \(\forall s, t \in \mathbb{R} \). Prove that \(\frac{\partial^2 U}{\partial s^2}(s, t) - \frac{\partial^2 U}{\partial s^2}(s, t) = 0 \) \(\forall s, t \in \mathbb{R} \).

VIII. (20%) Let \(\mathcal{O} \) be an open subset in \(\mathbb{R}^3 \) and suppose that the functions \(f : \mathcal{O} \to \mathbb{R} \), \(g : \mathcal{O} \to \mathbb{R} \) are continuously differentiable. Define

\[S = \{ (x, y, z) \in \mathcal{O} \mid g(x, y, z) = 0 \} \]

Suppose that \((x_0, y_0, z_0)\) in \(S \) is an extreme point of the function \(f : S \to \mathbb{R} \) and that \(\nabla g(x_0, y_0, z_0) \neq \mathbf{0} \). Use Implicit Function Theorem to prove that there exists a number \(\lambda \) such that

\[\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) \]