轉學考工數試題

1. Try to solve the general solution of the ordinary differential equation. (10%)
 \[my'' + cy' + ky = F_0 \cos wt \]

2. Try to solve the Euler-Cauchy equations. (13%)
 (a) \(x^2 y'' - \frac{1}{2} xy' + \frac{1}{2} y = 0 \)
 (b) \(x^2 y'' + xy' - y = 0 \)
 (c) \(x^2 y'' - xy' + y = 0 \)
 (d) \((x^2 - x)y'' - xy' + y = 0 \)

3. Solve the initial value problem by using Laplace Transform. (10%)
 \[y'' + y = 2t \quad \text{where} \quad y(\xi) = \xi, \quad y'(\xi) = 2 - \sqrt{2} \]

4. (i) Find the Laplace transform of the given function. (10%)
 \[e^{-t} \sin(wt + \theta) \]
 (ii) The symbol \(\mathcal{L} \) stands for the Laplace transform. Show that
 \[\mathcal{L} \left(\cosh(at) \cos(at) \right) = \frac{s^3}{s^4 + 4a^2} \] (10%)
 (iii) Using Laplace transform, solve the following given initial value problem:
 \[y'' + 6y + 8y = -2e^{-3t} + 3e^{-5t} \]
 with \(y(0) = 4 \), \(y'(0) = -14 \) (13%)

5. (1) Find all eigenvalues (characteristic values) and eigenvectors (characteristic vectors) of the following matrix. (20%)
 \[
 \begin{pmatrix}
 1 & -3 & 3 \\
 3 & -5 & 3 \\
 6 & -6 & 4
 \end{pmatrix}
 \]

 (2) Solve the following linear equations. (14%)
 \[
 \begin{align*}
 2x + y - z + w &= 5 \\
 x + 2y &= 3 \\
 2x + 2y - z + 3w &= 9 \\
 x + y - z + w &= 4 \\
 2x + 3y + 3w &= 8
 \end{align*}
 \]